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Abstract. We theoretically investigate an all optical scheme for three-dimensional trapping and cooling of
atoms in a single bichromatic standing wave with a Gaussian transverse intensity profile as, e.g. formed by
two different longitudinal modes of a linear optical cavity. The atoms are cooled through an efficient Sisy-
phus mechanism and trapped at those anti-nodes (maxima) of the stronger field where the second weaker
field has a node. This generates a large effective atom-field coupling as it is desired in nonlinear optical
experiments with clouds of atoms. The scheme effects high local densities modulated at the beat frequency
of the two involved modes. In the appropriate parameter regime the results from a three-dimensional
semi-classical approach are confirmed by a 1D full QMCWF-simulation. Extending our model to a more
realistic case, we include loss channels out of the system and repumping. Furthermore, we generalise our
approach to Λ-type level schemes, which exhibit promising optical nonlinearities. Trapping and cooling of
such atoms is predicted to be compatible with maintaining high cooperativities needed for large nonlinear
effects.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 42.50.Vk Mechanical effects of light on atoms,
molecules, electrons, and ions

1 Introduction

Since the successful introduction of the magneto-optical
trap (MOT) samples of large numbers of very cold atoms
have become a standard ingredient to numerous quantum
optics experiments [1–4]. Recently, the well-defined and
tailorable optical nonlinearities [5] of such atomic samples
have been very successfully used in fundamental quantum
optical experiments on optical bistability, generation of
squeezed light [6] and in particular QND intensity mea-
surements of optical beams [7]. Usually, the atoms at the
center of a (dark-spot) MOT are strongly coupled to one or
more focussed light beams or cavity fields whose quantum
properties are modified through the interaction with the
atoms. The atoms’ centre-of-mass motion is substantially
modified by these light fields and in general the atoms in
the interaction region will be heated, e.g., by dipole heat-
ing [8,9] so that the trap performance is strongly impaired.
Although the effective size of the atom-field interaction
region (≈ 10–100 µm) is much smaller than the MOT-
size (1–10 mm), dipole heating strongly limits the possi-
ble interaction times and field strengths. In this work, we
propose a setup where by proper choice of detunings and
field configuration (adding a second field) dipole heating is
strongly reduced and even reversed into cooling [10]. This
is accompanied by a periodic 3D confinement of the atoms
around those anti-nodes (3D maxima) of the stronger field
where the second weaker field is out of phase. Hence the
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atoms exhibit maximum atom-field coupling as desired,
but are hardly influenced by the second field.

In addition, due to the mismatch of the two wave vec-
tors this long-range density modulation greatly en-
hances the local density at the trapping points. Hence our
system, which could be realized using the D1 and D2 line
of alkalis should find application in many nonlinear optics
experiments based on cold atoms coupled to cavity fields.
In particular, it could be successfully used to trap one
or a few atoms in a high-Q optical micro-cavity [11,12].
This would provide large atom field coupling throughout
a sufficiently long period of time. Here only two (quasi-
1D) intra-cavity modes are required to achieve 3D con-
finement, which would greatly simplify the experimental
effort involved.

The most promising systems known to exhibit large
nonlinear optical effects are atoms with a Λ level scheme
interacting with a very strong and a weaker light field.
The most relevant parameter regime is where the weaker
field is tuned to the vicinity of the Autler-Townes Dou-
blet [13] caused by the stronger field. This scheme was
used by Roch, Grangier and coworkers for their recent
breakthrough in QND measurements [7]. It is particularly
interesting whether the forces induced by the light fields
tend to increase or decrease the cooperativity in such a
setup. Therefore, we also investigate trapping and cooling
in 3D for a Λ-system. For suitable parameters the trapping
efficiency is almost as large as for the scheme proposed by
us. Moreover, the most interesting results occur in the
most relevant parameter regime mentioned above.
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Fig. 1. The typical motion in the adiabatic potentials seen
by a slowly moving two-level atom in a standing wave with
parameters Ω = 5∆.

This work is organised as follows. First we briefly re-
view the light-induced forces acting on a two-level atom
in a strong standing wave. Then we present an overview
of the mathematical methods and approximations used at
the example of the XV -system. The validity of the semi-
classical approach is confirmed through a comparison with
a full Quantum Monte Carlo wave function simulation (in
1D). Finally the main results of the semi-classical simu-
lations in three dimensions are discussed. This part con-
cludes with an extension of our model to open transitions
which is a well known experimental situation. The next
part of the paper deals with the mechanical light effects
in a generic Λ level configuration. Again we discuss quali-
tatively the underlying physical mechanisms and conclude
with a discussion of the three-dimensional results.

2 Atoms in strong standing waves

2.1 Two-level atom

The mechanical light effects present in the simple configu-
ration of a two-level atom moving in a strong 1D standing
wave are well known and have been extensively discussed
in a seminal paper by Dalibard and Cohen-Tannoudji [14].
Let us deal with the case of very strong fields where the
secular approximation is valid which allows us to neglect
the coherences between the adiabatic eigenstates (Thomas-
Fermi approximation) of the Hamiltonian. Then the pon-
deromotive effect experienced by a moderately slowly mov-
ing atom is an “up and down” in the adiabatic potentials
formed by the eigenvalues of the internal Hamiltonian at
each point. The contribution from the excited level to the
local eigenstates determines the probability to change the
potential. Figure 1 depicts the potentials for the case of
red detuning and shows the most probable way of mov-
ing within them. From this figure it can be seen that red
detuning leads to a Sisyphus heating mechanism which
expels the atoms from the regions of maximum interac-
tion. Blue detuning has the disadvantage that the atoms
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Fig. 2. Energy levels and transitions involved. A strong σ+-
polarized laser dresses the 1

2 −
3
2 transition. The weaker σ−-

polarized laser leads to a spatially dependent redistribution
of the populations of the adiabatic potentials created by the
stronger one.

tend to be localized around the nodes of the field so that
they are easily lost in radial direction. That is why it is
rather difficult to investigate nonlinear optical effects with
strong standing waves. In the next section we propose a
scheme that holds the promise to overcome the sketched
problems.

2.2 Multilevel systems

As the simplest nontrivial example we consider an atom
with two ground states and three excited states as de-
picted in Figure 2. This model contains all the essential
physics and at the same time permits a numerical solution
within a reasonable amount of time. Note that we take all
relevant levels of the J = 1

2 ground and J = 1
2 ,

3
2 upper

manifolds. The results should also apply to higher angular-
momentum transitions of the type J → J, J → J + 1, in
particular to the configuration used in a recent experiment
by Grangier and coworkers [7], who use 2→ 2 and 2→ 3
transitions within the D1- and D2-line of rubidium.

The two standing waves are modeled as classical mono-
chromatic light fields. The stronger one is σ+-polarized
and acts on the 1

2 →
3
2 transition, whereas the weaker one

is σ−-polarized and acts on the 1
2 →

1
2 transition. If this

second laser is turned off, the atom will simply behave
as a two-level system because of optical pumping and the
atom will soon be expelled from the interaction zone with
the laser field through dipole heating [14,15]. The relevant
transitions along with their Clebsch-Gordan coefficients
and the applied light fields are shown in Figure 2. The
Hilbert-space of the system is given by

H = C5 ⊗ L2(Rs) ,

where s is the spatial dimension of the configuration space
(1D or 3D). As a major generalization of many previous
discussions of similar systems, we do not limit ourselves
to parameter regimes where an adiabatic elimination of
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the excited states is justified, since we are interested in
the case of strong atom-field coupling. A Hamiltonian ac-
counting for the free kinetic, the free internal part and the
interaction energy reads

H =
P 2

2m
−
∑
i=1,2

∆iΠei +
Ω1(x)

2
(A+ +A†+)

+
Ω2(x)

2
(B− +B†−) , (1)

where Ωi(x) is the position dependent Rabi frequency of
the i-th light field and ∆i = ωi− (Eei −Eg) the detuning
from the atomic transition g − ei. Πei is the projection
operator on the i-th excited level subspace. The operator
A+ is the annihilation operator of the g − e1 transition
and B− of the g − e2 transition, respectively, including
the Clebsch-Gordan coefficients [16]:

A+ =
1
√

3
|gl〉〈el

1|+ |g
r〉〈er

1| , A0 =

√
2

3
|gr〉〈el

1| ,

B− =

√
2

3
|gr〉〈e2| , B0 = −

1
√

3
|gl〉〈e2| .

The density operator ρ fulfils the following master equa-
tion of Lindblad type [17]:

ρ̇ = −i(Heffρ− ρH
†
eff) + J ρ (2)

with

Heff = H −
i

2
(Γ1Πe1 + Γ2Πe2) ,

J ρ =
3Γ1

8π

∑
σ,σ′

∫
dΩnNσσ′(n)e−ik1n·xAσρA

†
σ′e

ik1n·x +

+
3Γ2

8π

∑
σ,σ′

∫
dΩnNσσ′(n)e−ik2n·xBσρB

†
σ′e

ik2n·x ,

where Nσσ′(n) = δσσ′−(eσ ·n)(eσ′ ·n) is the polarization-
dependent spatial distribution of the fluorescent photons
with n being a unit vector and Γi the full natural line-
widths of the excited states |ei〉.

In order to treat 3D confinement, we choose a semi-
classical approach and study the evolution of the Wigner
operator W (x,p, t) of the atom:

W (x,p, t) =

∫
d3u

π3
〈p + u|ρ(t)|p − u〉ei2u·x .

Under the assumption that ~k is much smaller than
the typical variation of the Wigner operator W (x,p, t) on
the momentum subspace one can transform the master
equation (2) into a Fokker-Planck–type operator equation

∂

∂t
W (x,p, t) +

p

m
· ∇xW (x,p, t) = (3)(
L(0) + L(1) + L(2)

)
W (x,p, t) ,

where L(α)(α = 0, 1, 2) denotes the operator of order α in
the ~k-expansion [18,19].

The internal Hilbert space separates into two coher-
ently decoupled parts, one spanned by {|gl〉, |el

1〉} and the
other one by {|gr〉, |er

1〉, |e2〉}, respectively. Within these
subsets the eigenvalues of the Hamiltonian are well sepa-
rated for our parameters (Ω,∆� Γ ). Hence we may make
use of a secular approximation and neglect the off-diagonal
part of the density operator. Equation (3) is rewritten
in the basis of the eigenstates of the internal Hamilto-
nian (dressed states). We obtain a system of five coupled
Fokker-Planck–type equations for the populations of the
atomic dressed states [20]. We want to mention that for
the systems treated in this work only positive diffusion
coefficients (this is not the case in [20]) occur which is a
necessary prerequisite for the use of a Monte Carlo tech-
nique.

Since the adiabatic potentials are rather steep, the ac-
celeration of the atoms can be large and their internal de-
grees of freedom may not be adiabatically eliminated (“os-
cillation regime” [21]). The motion of an atom in the two
standing waves is hence determined by a multi-potential
motion in the adiabatic potentials interrupted by jumps
from one well into another, with a recoil kick into a ran-
dom direction. The intermediate adiabatic motion is nu-
merically evaluated using a stochastic modified midpoint
method which is equivalent to a stochastic fourth-order
Runge-Kutta method. In order to limit the necessary com-
putation time, we have to avoid a numerical calculation
of the eigenvectors in each step of the time propagation.
As the exact analytic expressions of the dressed states are
rather involved, we employ the following approximation,
which is discussed in more detail for the similar case of
the Λ configuration in the appendix.

First we calculate the dressed states for the case when
there is no σ−-field. This yields a set of states which we
choose to label |+l〉, |−l〉, |+r〉, |−r〉, |e2〉 with

|+l〉 = cos θl|e
l
1〉+ sin θl|g

l〉 , (4)

|−l〉 = − sin θl|e
l
1〉+ cos θl|g

l〉 , (5)

|+r〉 = cos θr|e
r
1〉+ sin θr|g

r〉 , (6)

|−r〉 = − sin θr|e
r
1〉+ cos θr|g

r〉 , (7)

cos 2θl =
−∆1√

∆2
1 + 1

3Ω
2
1

, (8)

sin 2θl =

√
1
3Ω1√

∆2
1 + 1

3Ω
2
1

, (9)

cos 2θr =
−∆1√
∆2

1 +Ω2
1

, (10)

sin 2θr =
Ω1√

∆2
1 +Ω2

1

. (11)

Then we assume that the detuning of the σ−-polarised
field is chosen to be nearly resonant with (|+r〉 or |−r〉).
We treat the resonant level together with the excited level
|e2〉 of the second transition as a driven two-level system
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and calculate the dressed states of this subsystem. Now
if the σ−-laser is detuned to the lower Rabi-level |−r〉 we
end up with the basis |+l〉, |−l〉, |+r〉, |a〉, |b〉 with their ap-
proximate energies El

+, E
l
−, E

r
+, Ea, Eb:

|a〉 = cosφ|e2〉 − sinφ sin θr|e
r
1〉+ sinφ cos θr|g

r〉 , (12)

|b〉 = −sinφ|e2〉−cosφ sin θr|e
r
1〉+cosφ cos θr|g

r〉 , (13)

Ea = −
∆2 +

√
∆2

1 +Ω2
1 sin2 θr

2
+
E2

2
, (14)

Eb = −
∆2 +

√
∆2

1 +Ω2
1 sin2 θr

2
−
E2

2
, (15)

cos 2φ =
−(∆2 −

√
∆2

1 +Ω2
1 sin2 θr)

E2
, (16)

sin 2φ =
Ω2 cos θr

E2
, (17)

E2 =

√
(−∆2 +

√
∆2

1 +Ω2
1 sin2 θr)2 +Ω2

2 cos2 θr . (18)

|a〉, |b〉 are linear combinations of each of the three levels
|gr〉, |er

1〉, |e2〉 which together form a V scheme.
This provides an excellent and robust approximation

for a large range of parameters [22]. For typical param-
eters used in the simulations the error incurred by the
approximation is at most of the order of one percent.

3 Local sisyphus cooling with the XV system

3.1 Qualitative treatment

Parameters yielding interesting results can be realized ex-
perimentally by choosing the D1- and D2-line of rubid-
ium. (For rubidium the Doppler limit for the width of
the momentum distribution is 28~k on the D1-line. The
recoil frequency ωR is 3.7 × 2πkHz.) This setup is simi-
lar to the one used by Grangier and coworkers for QND-
measurements [7].

The most interesting parameter regime results can be
found from the following considerations. In order to avoid
radial diffusion and to trap the atoms at spatial regions
with high field intensity the strong laser should be red de-
tuned. To avoid the dominant dipole heating, its detuning
has to be large enough that the population of the up-
per dressed levels is reasonably small. The second weaker
standing wave should act as a repumper between the two
lower highly populated dressed levels in a way that a local
Sisyphus mechanism is established. It turns out that the
best results are achieved, if it is tuned to the blue side of
the lower dressed level (i.e. below it in Fig. 3).

To get a feel for the mechanism at work we have a look
at the adiabatic potentials seen by a slowly moving atom
and their steady-state populations [23]. Almost all (more
than 99%) atoms are in the states |−l〉 and |a〉. The lower
dressed state of the |gl〉 − |el

1〉 transition is |−l〉 and |a〉 is
the upper state resulting from dressing the lower dressed
state of the |gr〉 − |er

1〉 transition with the second weaker
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Fig. 3. The highly populated adiabatic potentials. The left
plot shows the case of the standing waves having a relative
phase difference of π/2 whereas in the right plot they are
in phase. The length of the ordinate is slightly more than
half a wavelength. The parameters are Ω1 = 13.3Γ1, ∆1 =
−20Γ1, Γ1 = 1500ωR; Ω2 = 5.3Γ2, ∆2 = 6Γ2, Γ2 = Γ1.

field. The two potentials of these states are depicted in
Figure 3. The right one shows the situation where the two
light-fields are in phase. There the depth of the poten-
tial induced by the strong σ+- field is reduced (without
the second field it would be three times as deep as the
shallow one due to a larger Clebsch-Gordan coefficient,
cf. Fig. 2). The σ+-polarized field pumps the atoms from
the |−l〉 state to the |a〉 state whereas the σ−-polarized
field does just the opposite. When the two light fields are
in phase, these two processes tend to cancel each other.
Hence the populations do not vary much along one wave-
length (Fig. 4).

The situation is completely different when the two
fields have a phase difference of π/2 (Fig. 3a). There the
deeper potential is shifted towards positive energies at the
nodes of the σ+ field and gets steeper than without the
presence of the σ− light field. Furthermore, the two pump-
ing processes have spatially distinguished regions of effi-
ciency. Therefore all steady-state population at the anti-
nodes of the first light field is in the deeper potential
whereas at the nodes all atoms are in the flat one (Fig. 5).
For a slowly moving atom this leads to an efficient local
Sisyphus effect. A typical path of an atom in these po-
tentials is sketched in Figure 3a. We want to emphasize
again that the states |−l〉 and |a〉 belong to two disjoint
subsets of the Hilbert space and are coherently decoupled.
Hence the crossing of the energy levels in Figure 3 does not
create coherences between the states and does not allow
nonadiabatic transitions from one level to the other.

3.2 1D semiclassical and Quantum Monte Carlo
simulations

In order to develop a qualitative understanding and also
to test the validity and limitations of this method we first
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Fig. 4. Stationary population of adiabatic potentials as a func-
tion of position for a standing wave with no relative phase dif-
ference. The parameters are Ω1 = 13.3Γ1, ∆1 = −20Γ1, Γ1 =
1500ωR; Ω2 = 5.3Γ2, ∆2 = 6Γ2, Γ2 = Γ1.

0.0

0.5

1.0

-1/4 1/40

Pa

P-
l

po
pu

la
tio

n 
of

 e
ig

en
st

at
es

z/ 1

0.000

0.001

0.002

0.003

Pb

Fig. 5. Same as Figure 4 but for a relative phase difference of
π/2.

limit ourselves to the 1D case, where a direct full Quantum
Monte Carlo wave function (QMCWF) simulation [24,25]
and thus a comparison are feasible.

The results of the semiclassical simulations reflect the
expectations outlined in the preceding paragraphs. The
atoms are trapped at those locations in the superlattice
where the two light fields have a phase difference of π2 with
a momentum distribution having a width of the order of
10–15 ~k. For rubidium this is in the sub-Doppler regime.

Fig. 6. Comparison of the spatial and momentum distribu-
tions obtained from a semi-classical simulation (dotted) with
the ones from a Quantum Monte Carlo simulation (solid line).
The parameters are Ω1 = 13.3Γ1, ∆1 = −40Γ1, Γ1 =
1500ωR; Ω2 = 2Γ2, ∆2 = 6Γ2, Γ2 = Γ1; k1 = 1.125 × k2.

Figure 6 depicts the spatial and the momentum distri-
bution for the same parameters obtained by semi-classical
and QMCWF simulation techniques. The agreement of
the two approaches is excellent and confirms the valid-
ity of the semiclassical approach. In the QMCWF simu-
lation the excited levels of the atoms have been adiabati-
cally eliminated and therefore the model does not include
dipole heating. This is why the momentum distribution
obtained from the QMCWF simulation is slightly nar-
rower than the semiclassical results. The Rabi frequencies
are Ωi(z) = Ωi sin kiz.

The main goal of this comparison is to test the va-
lidity of the semiclassical description of the atomic mo-
tion. The reliability of the secular approximation, how-
ever, should even improve with increasing strength of the
light fields which is the case we will be considering in the
three-dimensional model.

4 3D cooling and trapping in a Gaussian
wave field

In a real 3D configuration as, e.g., a cavity mode, the light
fields in radial direction can be modeled by a simple Gaus-
sian distribution(Ωi(x) = Ωi sin(kiz) exp(−mi(x

2 + y2))).
A potential problem of trapping atoms in 3D with the
configuration used in 1D before is the repelling potential
of the blue detuned second laser seen by the atoms at the
nodes of the strong laser. Fortunately, the trapping mech-
anism is so strong that the atoms are hardly ever at these
critical points and if so, they are slow enough that the
population is likely to be pumped to the state |gl〉 which
does not couple to the blue laser. So it turns out that the
dominant escape mechanism is only that of accumulating
random momentum kicks in the radial direction (radial
diffusion). The potentials, however, are steep enough to
trap the atoms long enough to use them for nonlinear op-
tical experiments.
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Fig. 7. Spatial distribution of the atoms over one period of
the super-lattice. The z-axis is the direction of the two light
fields. The parameters are Ω1 = 13.3Γ1, ∆1 = −20Γ1, Γ1 =
1500ωR; Ω2 = 4Γ2, ∆2 = 5.3Γ2, Γ2 = Γ1; k2 = 0.9 × k1.
The FWHM of the light fields in radial direction is 140/k1.
The explicit spatial dependence of the two standing waves is
Ωi(x) = Ωi sin(kiz) exp(−mi(x

2 + y2)).

Fig. 8. Momentum distribution of the atoms. The z-axis
is the direction of the two light fields. The parameters are
Ω1 = 13.3Γ1, ∆1 = −20Γ1, Γ1 = 1500ωR; Ω2 = 4Γ2, ∆2 =
5.3Γ2, Γ2 = Γ1; k2 = 0.9 × k1. The FWHM of the light fields
in radial direction is 140/k1.

Figure 7 shows the spatial distribution of the atoms
and the momentum distribution. The z-axis is the laser di-
rection. From the momentum distribution (Fig. 8) one can
see that the cooling in longitudinal direction is excellent
(the FWHM is about 10 ~k1) while the radial momentum
spread is substantially larger (the FWHM is about 30 ~k1),
but still narrow enough to strongly limit the transverse
trap loss rate. The resulting spatial distribution
shows that the atoms are strongly confined within the su-
perlattice at the regions, where the two standing waves
have a phase shift of π/2 and the strong light field has

Fig. 9. The level scheme of the hyperfine structure of the D1

and D2 line of 87Rb.

J=3/2

J=1/2

J=1/2

Fig. 10. The level scheme of the extended model with an addi-
tional spectator level and the rates which affect the population
of it.

its maxima. Hence we can expect high local densities and
large cooperativities even for fairly small numbers of atoms
as they will not be smeared out evenly over the whole in-
teraction volume.

4.1 Hyperfine structure and repumping

For a practical realisation of this cooling scheme in al-
kali atoms the assumption of closed transitions has to
be thought over. This assumption is valid only in our
1
2 →

3
2 ,

1
2 →

1
2 configuration. For example in 87Rb the

only closed transition for the σ+-wave is a 2 → 3 transi-
tion, but then the 2→ 2 transition of the σ−-wave is not
closed (see Fig. 9). To model this we add a so-called spec-
tator level which the level |e2〉 can decay into with a rate
Γ0. This level is practically decoupled from the standing
waves and is repumped to one of the ground levels |gl〉, |gr〉
with a certain rate γ0. This can be achieved for example
by applying a diode-laser from the side. Figure 10 depicts
the extension of the level scheme sketched in Figure 2.

Figures 11 and 12 depict the effects of the inclusion of a
spectator level with reasonable pump rates in and out of it.
As one can see, the radial width of the spatial distribution
is increased and therefore also the probability for an atom
to leave the radial focus. Nevertheless the effect is too
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Fig. 11. Spatial distribution of the atoms over one period of
the super-lattice. The z-axis is the direction of the two light
fields. The parameters are Ω1 = 13.3Γ1, ∆1 = −20Γ1, Γ1 =
1500ωR; Ω2 = 4Γ2, ∆2 = 5.3Γ2, Γ2 = Γ1; k2 = 0.9×k1, Γ0 =
Γ2/3, γ0 = Γ0/5. The FWHM of the light fields in radial di-
rection is 140/k1. The explicit spatial dependence of the two
standing waves is Ωi(x) = Ωi sin(kiz) exp(−mi(x

2 + y2)).

Fig. 12. Momentum distribution of the atoms. The z-axis
is the direction of the two light fields. The parameters are
Ω1 = 13.3Γ1, ∆1 = −20Γ1, Γ1 = 1500ωR; Ω2 = 4Γ2, ∆2 =
5.3Γ2, Γ2 = Γ1; k2 = 0.9 × k1, Γ0 = Γ2/3, γ0 = Γ0/5. The
FWHM of the light fields in radial direction is 140/k1.

small to substantially modify the cooling mechanism for
fast enough pumping.

If, however, the strength of the repumper is substan-
tially smaller, many atoms will leave the regions where
the cooling and trapping mechanism works and will be
heated. Figures 13 and 14 depict the effects of a too small
repumping rate. The longitudinal width of the momen-
tum distribution is much larger than in Figure 12 which
is caused by the fact that the atoms are no longer confined
at the out-of-phase regions of the two standing waves. The
radial width of the spatial distribution is substantially in-

Fig. 13. Spatial distribution of the atoms over one period of
the super-lattice. The z-axis is the direction of the two light
fields. The parameters are Ω1 = 13.3Γ1, ∆1 = −20Γ1, Γ1 =
1500ωR; Ω2 = 4Γ2, ∆2 = 5.3Γ2, Γ2 = Γ1; k2 = 0.9×k1, Γ0 =
Γ2/3, γ0 = Γ0/100. The FWHM of the light fields in radial
direction is 140/k1. The explicit spatial dependence of the two
standing waves is Ωi(x) = Ωi sin(kiz) exp(−mi(x

2 + y2)).

Fig. 14. Momentum distribution of the atoms. The z-axis
is the direction of the two light fields. The parameters are
Ω1 = 13.3Γ1, ∆1 = −20Γ1, Γ1 = 1500ωR; Ω2 = 4Γ2, ∆2 =
5.3Γ2, Γ2 = Γ1; k2 = 0.9× k1, Γ0 = Γ2/3, γ0 = Γ0/100. The
FWHM of the light fields in radial direction is 140/k1 .

creased, which diminishes the time an atom is bound to
the centre of the Gaussian mode.

5 Atoms with a bichromatic Lambda scheme

As already mentioned, the most promising system to ex-
hibit strong nonlinear optical effects with low noise are
atoms with a Lambda level configuration interacting with
a strong and a weaker light field [5,22]. In the following
section we investigate the mechanical effects present for
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|g  >1

|g  >2

|e>

Fig. 15. Energy levels and transitions involved.

such a setup where the two light fields are realized by two
different longitudinal TEM00 Gaussian modes in a cavity.
Again we are able to find parameters where the atoms are
pushed to the anti-nodes of the light field and are cooled
down to reasonably small temperatures. For rubidium the
temperatures are of the order of the Doppler limit, but in
a parameter regime where the dipole heating would shift
the minimum temperature achievable for a two-level sys-
tem far above the optimum Doppler limit for a two-level
atom. By comparison with the XV system the trapping
efficiency is smaller but the atoms accumulate where both
waves have their maximum. This is crucial for obtaining
a substantial nonlinear interaction between the two light
fields. It is exactly this feature which one needs to perform
experiments which aim at achieving strong nonlinear in-
teraction between two light fields.

5.1 The model

Like the XV system we study the Λ in a superlattice
formed by two collinear standing waves of different fre-
quencies as depicted in Figure 15.

The Hamiltonian of the atom in the rotating frame
using dipole and rotating-wave approximation reads:

H =
P 2

2m
+
∑
i=1,2

∆iΠgi +
Ω1(x)

2
(σ1 + σ†1)

+
Ω2(x)

2
(σ1 + σ†1) , (19)

where Ωi(x) = Ωi sin(kiz) exp(−mi(x
2 + y2)) is the posi-

tion-dependent Rabi frequency of the i-th light field and
∆i = ωi − (Ee −Egi) the detuning from the atomic tran-
sition gi − e. Πgi is the projection operator on the i-th
ground level subspace. The operator σ1(σ2) is the annihi-
lation operators of the g1−e(g2−e) transition. We choose
the polarisation of the first transition to be σ+ and that
of the second one to be σ−.

All further steps to obtain numerically soluble equa-
tions are analogous to the ones described in the preceding
section. We diagonalize the internal Hamiltonian of the
atom in the same way as discussed for the V system and
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Fig. 16. The highly populated adiabatic potentials. The large
plot shows the two strongly populated ones while the inset
shows all three of them to illustrate their relative depths. The
phase difference of the two standing waves is zero and the other
parameters are as follows: Ω1 = 40Γ1, ∆1 = −100Γ1, Γ1 =
1000ωR; Ω2 = 8Γ2, ∆2 = −104Γ2, Γ2 = Γ1.
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Fig. 17. The stationary population of the adiabatic potentials.
The large plot shows the two mainly populated ones whereas
the inset shows the population of the almost empty upper po-
tential. The phase difference of the two standing waves is zero
and the other parameters are the following: Ω1 = 40Γ1, ∆1 =
−100Γ1, Γ1 = 1000ωR; Ω2 = 8Γ2, ∆2 = −104Γ2, Γ2 = Γ1.

use a ~k expansion of the time evolution equation for the
Wigner operator in the new basis neglecting all coher-
ences. Details of the diagonalisation can be found in the
appendix.

5.2 Cooling scheme

As for the XV system the adiabatic potentials and their
stationary populations suffice to provide a qualitative
understanding of the motional aspects of the light mat-
ter interaction. We observe the anticipated dependence of
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Fig. 18. Spatial distribution of the atoms over one period of
the super-lattice. The z-axis is the direction of propagation of
the two light fields. The parameters are Ω1 = 40Γ1, ∆1 =
−100Γ1, Γ1 = 1000ωR; Ω2 = 8Γ2, ∆2 = −104Γ2, Γ2 =
Γ1; k2 = 0.9 × k1. The FWHM of the light fields in radial
direction is 140/k1 . The explicit spatial dependence of the two
standing waves is Ωi(x) = Ωi sin(kiz) exp(−mi(x

2 + y2)).

the force on the relative phase of the two standing waves,
which is, however, not as important as in the XV scheme.
Figure 16 depicts the adiabatic potentials seen by a slowly
moving atom, where the two light fields are in phase and
have local maxima at z = 0. The small inset shows all of
the three potentials while the main plot shows only the
two strongly populated ones.

Figure 17 depicts the stationary population of the lev-
els corresponding to the three adiabatic potentials. The
main plot shows the populations of the lower two poten-
tials Ea and Eb, while the inset depicts the population
of the upper potential E+. From this figure one can es-
timate the typical behavior of the atoms. They enter in
the flat Eb-potential and roll down the sides of the small
trough out of which they are preferably pumped into the
steeper potential Ea. An escape out of Ea becomes more
likely closer to the local maxima. In getting there they
lose kinetic energy. Then they fall back to the flat po-
tential again having lost kinetic energy in the process. In
fact this process does not happen very often. A look at
single trajectories shows that the atoms travel over many
wavelengths staying on the Eb-potential before undergo-
ing such a cooling cycle. Furthermore, in regions where
the two light fields are far out of phase almost nothing
happens because the amplitudes reach their maxima in
regions where the effective detuning is much higher and
so the pumping rates decrease.

5.3 Numerical results in 3D

As stated in the preceding section the atoms stay mainly
on the Eb potential curve. This has the disadvantage that
the relatively small gradient of this potential potential
outside a region around the anti-nodes of the second light
field strongly limits the trapping efficiency. To avoid this

Fig. 19. Momentum distribution of the atoms. The z-axis is
the direction of propagation of the two light fields. The pa-
rameters are Ω1 = 40Γ1, ∆1 = −100Γ1, Γ1 = 1000 ωR; Ω2 =
8Γ2, ∆2 = −104Γ2, Γ2 = Γ1; k2 = 0.9 × k1. The FWHM of
the light fields in radial direction is 140/k1 .

one can add a far–off-resonance trap, which only affects
the level |g2〉 and therefore mainly deforms the Eb po-
tential. For the calculations leading to the results shown
in Figures 18 and 19, we add a shallow trap in the fol-
lowing way. We assume that without the additional far
red detuned laser the difference between Eb and Ea at
the common nodes of the two standing waves would be
only one third of what we want to have at r = 0. This is
achieved by the following replacement:

Eb(z, r)→ Eb(z, r) +
2

3
(∆1 −∆2)(1− e

−m3r
2

),

where the radial dependence coefficient m3 was chosen to
be equal to m1 and m2, the radial coefficients of the Gaus-
sian modes. Actually the detuning ∆2 has to be regarded
as the detuning between the σ− polarised light field and
the |g2〉− |e〉 transition including the light shift of the |g2〉
level induced by the additional far–off-resonant laser.

As one can see in Figures 18 and 19 there is localiza-
tion and cooling and the atoms accumulate in the regions
where the light fields both have their anti-nodes which
is crucial for observing strong nonlinear cross-coupling ef-
fects. Note that there is a new double-peak structure in the
momentum distribution, which appears due to the follow-
ing reasons. The cooling is quite efficient only in a rather
small region around the radial focus and atoms further
away from the center see a light field configuration, which
slightly heats in longitudinal direction. There the second
light field is not resonantly coupled to the dressed state in-
duced by the first one and the only remaining mechanical
effect is dipole heating and diffusion both tending to expel
atoms from the center of the momentum distribution.

6 Summary

We have demonstrated that using two TEM00 modes of
an optical cavity, one gets a scheme which promises a
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straightforward way to cool and trap atoms at the anti-
nodes of a strong standing wave. The results have been
obtained by semi-classical multi-potential propagation in
1D and 3D and were confirmed in 1D by Quantum Monte
Carlo wave function simulations. Our setup generates cold
and localized atoms, well suited for an investigation of
nonlinear optical effects. Atoms initially within a disc of
the diameter of the beam-waist and a thickness of the
super-lattice period are strongly confined and trapped
within a very few optical potential wells of the strong
mode. The resulting high local atomic densities will of
course be limited by atom-atom interactions. Furthermore,
in the low density limit the system seems quite promising
for studying intra-cavity QED effects with few atoms in
the optical domain. Long interaction times and large co-
operativities arise as a consequence of the atoms being
trapped at the anti-nodes of the strong standing wave.
Additional interesting effects should arise from an inclu-
sion of the resonator dynamics [26].

Furthermore, for a Λ atom interacting with the two
standing waves, it is possible to find a setup where the
mechanical light effects strongly improve the nonlinear
coupling between the two applied light fields.
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Appendix A: Diagonalization of the Λ Hamil-
tonian

Appendix A gives some details of the analytical approx-
imation used in the calculations for the eigenvalues and
eigenstates of the local Hamiltonian. This is only shown
for the Λ configuration, because the procedure for the V
is basically the same.

In the bare basis {|e〉, |g1〉, |g2〉} the internal Hamilto-
nian reads  0 Ω1/2 Ω2/2

Ω1/2 ∆1 0

Ω2/2 0 ∆2

 .

By introducing cos 2θ ≡ ∆1/
√
Ω2

1 +∆2
1 and sin 2θ ≡ Ω1/√

Ω2
1 +∆2

1 we diagonalize the upper left 2 by 2 block with
the new basis {|+〉 ≡ sin θ|e〉 + cos θ|g1〉, |−〉 ≡ cos θ|e〉 −
sin θ|g1〉, |g2〉}. In our case |g2〉 is nearly resonantly coupled
to the |−〉 level. Hence we go on treating |g2〉 and |−〉 as a
driven two-level system which has no influence on the |+〉

state. With

cos 2φ ≡
∆2 +

√
Ω2

1 +∆2
1 sin2 θ

E2
,

sin 2φ ≡
Ω2 cos θ

E2
,

E2 ≡

√
(∆2 +

√
Ω2

1 +∆2
1 sin2 θ)2 +Ω2

2 cos2 θ ,

we end up with the basis

|+〉 ≡ sin θ|e〉+ cos θ|g1〉 ,

|a〉 ≡ sinφ cos θ|e〉 − sinφ sin θ|g1〉+ cosφ|g2〉 ,

|b〉 ≡ cosφ cos θ|e〉 − cosφ sin θ|g1〉 − sinφ|g2〉 .

In this double-dressed basis the Hamiltonian reads
√
Ω2

1 +∆2 cos2 θ Ω2

2 sin θ cosφ −Ω2

2 sin θ sinφ
Ω2

2 sin θ cosφ ∆2 +E2 sin2 φ 0

−Ω2

2 sin θ sinφ 0 ∆2 −E2 cos2 φ

 .

Provided that Ω1 is considerably larger than Ω2, this is
an excellent approximation to the result of a complete
diagonalization of the Hamiltonian.
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